kalmanCentralizedLTV
Updated:
Tags: documentation, estimation, ltv
Sintax
[K,Ppred,Pfilt] = kalmanCentralizedLTV(system,Pprev)
Description
Consider a generic LTV system of the form
\[\begin{cases} \mathbf{x}(k+1)=\mathbf{A}(k)\mathbf{x}(k)+\mathbf{B}(k)\mathbf{u}(k)+\mathbf{w}(k)\\ \mathbf{y}(k)=\mathbf{C}(k)\mathbf{x}(k)+\mathbf{v}(k) \end{cases}\:,\]where $\mathbf{x}(k)\in\mathbb{R}^{n}$ is the state vector, $\mathbf{u}(k)\in \mathbb{R}^{m}$ is the input vector, which is assumed to be known, and $\mathbf{y}(k)\in\mathbb{R}^{o}$ is the output of the system. The vectors $\mathbf{w}(k)$ and $\mathbf{v}(k)$ are the process and observation noise, modelled as zero-mean uncorrelated white Gaussian processes with associated covariance matrices $\mathbf{Q}(k) \succeq \mathbf{0}\in\mathbb{R}^{n\times n}$ and $\mathbf{R}(k) \succ \mathbf{0}\in\mathbb{R}^{o\times o}$, respectively.
Consider a standard Kalman filter. The prediction step follows
\[\hat{\mathbf{x}}(k|k-1) = \mathbf{A}(k-1)\hat{\mathbf{x}}(k-1|k-1)+\mathbf{B}(k-1)\mathbf{u}(k-1)\:,\]where $\hat{\mathbf{x}}(k|k-1)$ denotes the predicted state estimate at time instant $k$ and $\hat{\mathbf{x}}(k|k)$ the filtered state estimate at time instant $k$. The filtering step follows
\[\hat{\mathbf{x}}(k|k) = \hat{\mathbf{x}}(k|k-1)+\mathbf{K}(k)\left(\mathbf{y}(k) - \mathbf{C}(k)\hat{\mathbf{x}}(k|k-1)\right)\:,\]where $\mathbf{K}(k)\in\mathbb{R}^{n\times o}$ is the filter gain at time instant $k$.
The command
computes the centralized kalman filter gain at time instant $k$.
Input arguments
Required
system
: \(1\times 4\) cell array of the time-varying dynamics matrices of the LTV system, i.e.,system{i,1}
: \(\mathbf{A}(k)\)system{i,2}
: \(\mathbf{C}(k)\)system{i,3}
: \(\mathbf{Q}(k)\)system{i,4}
: \(\mathbf{R}(k)\)
Pprev
: predicted estimation error covariance matrix, i.e., $\mathbf{P}(k|k-1)$
Output Arguments
K
: filter gain matrix $\mathbf{K}(k)$Ppred
: predicted estimation error covariance matrix $\mathbf{P}(k+1|k)$Pfilt
: filtered estimation error covariance matrix $\mathbf{P}(k|k)$