LQROneStepLTI
Updated:
Tags: control, documentation, lti, one-step
Sintax
[K_inf,P_inf] = LQROneStepLTI(A,B,Q,R,E)
[K_inf,P_inf] = LQROneStepLTI(A,B,Q,R,E,opts)
Description
Consider a generic LTI system of the form
\[\mathbf{x}(k+1)=\mathbf{A}\mathbf{x}(k)+\mathbf{B}\mathbf{u}(k)\;\]where $\mathbf{x}(k)\in\mathbb{R}^{n}$ is the state vector, $\mathbf{u}(k)\in \mathbb{R}^{m}$ is the input vector, and $\mathbf{A}$ and $\mathbf{B}$ are constant matrices of appropriate dimensions.
Consider a standard LQR regulator
\[\mathbf{u}(k) = -\mathbf{K}(k)\mathbf{x}(k)\:,\]where $\mathbf{K}(k)\in\mathbb{R}^{m\times n}$ is the regulator gain. It is often very useful to find a steady-state constant gain $\mathbf{K}_{\infty}$ instead. Consider a regulator cost function
\[J(k) = \sum_{\tau=k}^{\infty}\left(\mathbf{x}^T(\tau)\mathbf{Q}\mathbf{x}(\tau)+\mathbf{u}^T(\tau)\mathbf{R}\mathbf{u}(\tau)\right)\:,\]where $\mathbf{Q} \succeq \mathbf{0}\in\mathbb{R}^{n\times n}$ and $\mathbf{R} \succ \mathbf{0}\in\mathbb{R}^{m\times m}$ are the weighing matrices of the state vector and control action, respectively. It can be shown that there is a matrix $\mathbf{P}(k) \succ \mathbf{0}\in\mathbb{R}^{n\times n}$ such that
\[J(k) = \mathbf{x}^T(k)\mathbf{P}(k)\mathbf{x}(k)\]Suppose that $\mathbf{x}(0)$ is sampled from a normal distribution with zero mean and covariance $\alpha \mathbf{I}$, where $\alpha \in \mathbb{R}^{+}$ and that a stabilizing steady-state regulator gain $\mathbf{K}_{\infty}$ is used. Then,
\[\mathrm{E}[J(0)] = \alpha \mathrm{tr}(\mathbf{P}_{\infty})\:,\]where $\mathbf{P}_{\infty}$ is the steady-state value of $\mathbf{P}(k)$ as $k \to \infty$, as shown in [Section 3, 1].
Let matrix $\mathbf{E} \in\mathbb{R}^{m\times n}$ denote a sparsity pattern. The set of matrices which obey the sparsity constraint determined by $\mathbf{E}$ is defined as
\[\mathrm{Sparse}(\mathbf{E}) :=\left\{[\mathbf{K}]_{ij}\in\mathbb{R}^{m\times n}: [\mathbf{E}_{ij}] = 0 \implies [\mathbf{K}]_{ij}= 0;\: i= 1,...,m, \:j=1,...,n \right\}.\]The commands
compute the steady-state decentralized gain that aims at solving the optimization problem
\[\begin{aligned} & \underset{\begin{subarray}{c}\mathbf{K}_{\infty}\in \mathbb{R}^{m\times n} \end{subarray}}{\text{minimize}} & & \mathrm{tr}(\mathbf{P}_{\infty}) \\ & \text{subject to} & & \mathbf{K}_{\infty} \in \mathrm{Sparse}(\mathbf{E})\:, \end{aligned}\]using the one-step method proposed in [Section 3, 1].
Computational complexity
The one-step optimization problem is solved using the efficient sparse equation solver proposed in [2]. See sparseEqSolver for the implementation of the solver.
Define the set $\chi$ of integer pairs of the form $(i,j)$ to index the nonzero entries of $\mathbf{E}$ as
\[\begin{cases} (i,j) \in \chi &\;,\;\left[\mathbf{E}\right]_{i,j} \neq 0\\ (i,j) \notin \chi &\;,\;\text{otherwise} \end{cases}, i = 1,...,n,\: j = 1,...,o\:.\]It is shown in [2] that each gain computation of the algorithm requires $\mathcal{O}(|\chi|^3)$ floating-point operations, where $|\chi|$ denotes the cardinality of set $\chi$. In the field of distributed estimation and control theory, $|\chi|$ is usually given by $|\chi| \approx cn$, where $c\in \mathbb{N}$ is a constant. It, thus, follows that each iteration requires $\mathcal{O}(n^3)$ floating-point operations, thus it has the same complexity as a centralized gain computation.
Input arguments
Required
A
: matrix $\mathbf{A}$ of the dynamics of the LTI systemB
: matrix $\mathbf{B}$ of the dynamics of the LTI systemQ
: state weighting matrix, $\mathbf{Q} \succeq \mathbf{0}$R
: control action weighting matrix, $\mathbf{R} \succeq \mathbf{0}$E
: sparsity pattern $\mathbf{E}$
Optional
opts
: struct of optional arguments (assumes default value for each parameter which is not assigned by the user)epsl
: minimum relative improvement on the objective function of the optimization problem (default:opts.epsl = 1e-5
)
findWindowLength
: if enabled iterates through window length values until convergence is reached (default:opts.findWindowLength = false
)
W
: if findWindowLength is enabledopts.W
is the starting value of the window length, otherwise it is the single value of the finite window length for which convergence is sought (default:opts.W = round(2/min(abs(eig(A))))
)
maxOLIt
: maximum number of outer loop iterations to run until convergence (default:opts.maxOLIt = 100
)
verbose
: display algorithm status messages (default:opts.verbose = false
)
Output Arguments
K_inf
: steady-state regulator gain matrix $\mathbf{K}_{\infty}$P_inf
: steady-state matrix $\mathbf{P}_{\infty}$
Examples
See Regulator design using the finite-horizon method for a tutorial.